3.618 \(\int \frac {\sqrt {\sec (c+d x)}}{(a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=227 \[ -\frac {b \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac {\left (2 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d \left (a^2-b^2\right )}+\frac {b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d \left (a^2-b^2\right )}-\frac {b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d (a-b) (a+b)^2} \]

[Out]

-b*sin(d*x+c)*sec(d*x+c)^(1/2)/(a^2-b^2)/d/(a+b*sec(d*x+c))+b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*
EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d/(a^2-b^2)+(2*a^2-b^2)*(cos(1/2*d*x
+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^
2/(a^2-b^2)/d-b*(3*a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/
(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/(a-b)/(a+b)^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.37, antiderivative size = 227, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3843, 4106, 3849, 2805, 3787, 3771, 2639, 2641} \[ -\frac {b \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac {\left (2 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d \left (a^2-b^2\right )}+\frac {b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d \left (a^2-b^2\right )}-\frac {b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d (a-b) (a+b)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/(a + b*Sec[c + d*x])^2,x]

[Out]

(b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*(a^2 - b^2)*d) + ((2*a^2 - b^2)*Sqrt[Co
s[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*(a^2 - b^2)*d) - (b*(3*a^2 - b^2)*Sqrt[Cos[c +
d*x]]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*(a - b)*(a + b)^2*d) - (b*Sqrt[Sec[c
+ d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*(a + b*Sec[c + d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3843

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*d*
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m +
 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[b*d*(n - 1) + a*d*(m + 1)*Csc
[e + f*x] - b*d*(m + n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && Lt
Q[m, -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4106

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\sec (c+d x)}}{(a+b \sec (c+d x))^2} \, dx &=-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac {\int \frac {-\frac {b}{2}-a \sec (c+d x)+\frac {1}{2} b \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{-a^2+b^2}\\ &=-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac {\int \frac {-\frac {a b}{2}-\left (a^2-\frac {b^2}{2}\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{a^2 \left (a^2-b^2\right )}-\frac {\left (b \left (3-\frac {b^2}{a^2}\right )\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{2 \left (a^2-b^2\right )}\\ &=-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac {b \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a \left (a^2-b^2\right )}+\frac {\left (2 a^2-b^2\right ) \int \sqrt {\sec (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )}-\frac {\left (b \left (3-\frac {b^2}{a^2}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{2 \left (a^2-b^2\right )}\\ &=-\frac {b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 (a-b) (a+b)^2 d}-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac {\left (b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a \left (a^2-b^2\right )}+\frac {\left (\left (2 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a^2 \left (a^2-b^2\right )}\\ &=\frac {b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a \left (a^2-b^2\right ) d}+\frac {\left (2 a^2-b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 \left (a^2-b^2\right ) d}-\frac {b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 (a-b) (a+b)^2 d}-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 5.14, size = 251, normalized size = 1.11 \[ \frac {\cos (2 (c+d x)) \csc (c+d x) \sqrt {\sec (c+d x)} \left (-\left (3 a^2-b^2\right ) \sqrt {-\tan ^2(c+d x)} \sqrt {\sec (c+d x)} (a \cos (c+d x)+b) \Pi \left (-\frac {b}{a};\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )+a (a-b) \sqrt {-\tan ^2(c+d x)} \sqrt {\sec (c+d x)} (a \cos (c+d x)+b) F\left (\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )+a b \left (\sqrt {-\tan ^2(c+d x)} \sqrt {\sec (c+d x)} (a \cos (c+d x)+b) E\left (\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )-b \tan ^2(c+d x)\right )\right )}{a^2 d (a-b) (a+b) \left (\sec ^2(c+d x)-2\right ) (a \cos (c+d x)+b)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + b*Sec[c + d*x])^2,x]

[Out]

(Cos[2*(c + d*x)]*Csc[c + d*x]*Sqrt[Sec[c + d*x]]*(a*(a - b)*(b + a*Cos[c + d*x])*EllipticF[ArcSin[Sqrt[Sec[c
+ d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2] - (3*a^2 - b^2)*(b + a*Cos[c + d*x])*EllipticPi[-(b/a),
 ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2] + a*b*(-(b*Tan[c + d*x]^2) + (b + a*
Cos[c + d*x])*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2])))/(a^2*(a -
b)*(a + b)*d*(b + a*Cos[c + d*x])*(-2 + Sec[c + d*x]^2))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

maple [B]  time = 8.39, size = 788, normalized size = 3.47 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+
4*b/a/(a^2-a*b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/
2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))+2*b^2/a^2*(a^2/b/(a^2-b^2)*cos(1/2*d*x+
1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*a*cos(1/2*d*x+1/2*c)^2-a+b)-1/2/(a+b)/b*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*E
llipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*a/b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1
)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*a/b/(a^
2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/b/(a^2-b^2)/(a^2-a*b)*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+
1/2*c),2*a/(a-b),2^(1/2))+3/2*b/(a^2-b^2)/(a^2-a*b)*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)
^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))))
/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(1/2)/(a + b/cos(c + d*x))^2,x)

[Out]

int((1/cos(c + d*x))^(1/2)/(a + b/cos(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\left (a + b \sec {\left (c + d x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**2,x)

[Out]

Integral(sqrt(sec(c + d*x))/(a + b*sec(c + d*x))**2, x)

________________________________________________________________________________________